Searches for signatures of supersymmetry with the α_T variable at CMS

Mark Baber
Imperial College London

31/03/15
Outline

- Supersymmetry searches at the LHC
- The α_T hadronic search for supersymmetry
 - Analysis strategy and methods
 - LHC Run 1 α_T supersymmetry search results
- Supersymmetry in LHC Run 2
 - Opportunities and challenges
- The α_T analysis in Run 2
 - Trigger and analysis developments
Signatures of supersymmetry (SUSY)

- Supersymmetric particles share the same couplings as their SM counterparts
 - Dominant production mechanism at the LHC is strong production of squarks and gluinos
 - → Hadronic final states

- If R-parity, \(R_p = (-1)^{3(B-L)+2S} \), is conserved:
 - → Sparticles are pair-produced and decay to sparticle-particle pairs in cascades
 - → The lightest supersymmetry particle (LSP) is stable

- This leads to the typical SUSY event signature for hadronic final states:
 - High-\(p_T \) jets, large jet multiplicities and b-jets
 - Large scalar sum of hadronic energy, \(H_T \)
 - Missing transverse energy (MET) from the LSP
The Compact Muon Solenoid (CMS)

- General purpose detector with large rapidity coverage, $|\eta| < 5$
- Hermetic design provides precise measurement of MET

- Two-level trigger system
 - Hardware: Level-1 trigger (L1)
 - Software: High level trigger (HLT)

- Particle flow (PF) reconstruction
 - Measurement of sub-detectors are combined to individually reconstruct particles
The α_T analysis

- An inclusive hadronic search for supersymmetry (SUSY) with the CMS experiment
 - Event signature: Jets and MET

- Eliminate QCD with the use of the dimensionless kinematic α_T variable
 - $\alpha_T \equiv \frac{E_T^{j_2}}{M_T} \quad M_T = \sqrt{H_T^2 - \hat{H}_T^2}$

- Utilise three discriminating variables: H_T, N_{Jet}, N_{b}
 - Categorise signal model topology and better control of backgrounds

- Robust and inclusive search with low-thresholds
 - Provides sensitivity to a large range of SUSY models

\[\alpha_T = 0.5 \quad \text{Jet} \quad \text{Jet} \]

\[\alpha_T < 0.5 \quad \text{Jet} \quad \text{Jet} \]

\[\alpha_T > 0.5 \quad \text{LSP} \quad \text{LSP} \]

\[\text{QCD} \]

\[\text{Mismeasurement} \]

\[\text{Signal} \]

\[\alpha_T > 0.5 \]

\[\alpha_T < 0.5 \]

\[\alpha_T = 0.5 \]
Data driven background estimation

- SM backgrounds with genuine MET remain after α_T selection
 - $t\bar{t}$, $W +$ jets and $Z +$ jets

- Estimate backgrounds using three kinematically similar data control samples
 - $\mu +$ jets, $\mu\mu +$ jets and $\gamma +$ jets
 - Neglect μ, γ to emulate background topologies

- Translation factors predict background contamination in signal region from yields in the control samples and MC modelling

- Validate procedure with closure tests using translation factors between control samples
Run 1 results

- Latest published result 11.7 fb\(^{-1}\) at 8 TeV: [arXiv:1303.2985](https://arxiv.org/abs/1303.2985)

- No excess above SM background expectation is observed
 - Set limits on 6 models with simplified model interpretations
 - **Production**: Gluino and squark pairproduction **Decay**: Light flavour, sbottoms and stops

 ![Simplified model diagram](image)

 - From the 6 model interpretations achieve 95\% CL on maximum mass exclusion:
 - **Gluinos**: 950-1125 GeV
 - **Light squarks**: 750 GeV (450 GeV single light squark)
 - **Sbottoms**: 600 GeV

31/03/2015

Mark Baber - IOP
Coverage of SUSY searches in Run 1

- Current searches at the LHC have set strong limits for large mass splittings.
- The limits for models with small ‘compressed’ mass splittings however are considerably weaker:
 - Challenging due to low visible energy in final state
- Acceptance to compressed spectra can be achieved by exploiting ISR:
 - ISR boosts soft decay products into trigger acceptance
- α_T has extended acceptance to compressed spectra by exploiting ISR and lower trigger thresholds:
 - Analysis of full 18.5 fb$^{-1}$ 8 TeV dataset currently undergoing approval
Supersymmetry in Run 2

- In LHC Run 2 the centre of mass energy will far exceed what was achieved in Run 1
 - $\sqrt{s} = 8 \text{ TeV} \rightarrow 13 \text{ TeV}$

- This will yield a large increase in the production cross section of massive objects
 - Relatively small for Higgs
 - Potentially very large for SUSY

- Run 2 will bring a large boost to sensitivity of SUSY searches
 - Gluinos will be of particular interest in early data

Higgs:
- Mass: 125 GeV
- $\sigma = 2 \times \sigma(8 \text{ TeV})$

Stops:
- $\sim 750 \text{ GeV}$
- $\sigma = 5-10 \times \sigma(8 \text{ TeV})$

Gluinos:
- $\sim 1.4 \text{ TeV}$
- $\sigma = 20-35 \times \sigma(8 \text{ TeV})$
Triggering in Run 2

- In Run 1 $\alpha_T - H_T$ cross triggers enabled low analysis thresholds to be utilised
 - Inefficiencies at low-H_T a result of Level-1 thresholds

<table>
<thead>
<tr>
<th>Offline H_T region (GeV)</th>
<th>Offline α_T threshold</th>
<th>L1 seed (L1_?)</th>
<th>Trigger (HLT_?)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$200 < H_T < 275$</td>
<td>0.65</td>
<td>DoubleJetC64</td>
<td>HT200_AlphaTop57</td>
<td>$81.8^{+0.4}{-0.4}$ $78.9^{+0.3}{-0.4}$</td>
</tr>
<tr>
<td>$275 < H_T < 325$</td>
<td>0.60</td>
<td>DoubleJetC64</td>
<td>HT200_AlphaTop57</td>
<td>$95.2^{+0.3}{-0.4}$ $90.0^{+1.2}{-1.3}$</td>
</tr>
<tr>
<td>$325 < H_T < 375$</td>
<td>0.55</td>
<td>DoubleJetC64 OR HTT175</td>
<td>HT300_AlphaTop53</td>
<td>$97.9^{+0.3}{-0.3}$ $95.6^{+0.9}{-1.0}$</td>
</tr>
<tr>
<td>$375 < H_T < 475$</td>
<td>0.55</td>
<td>DoubleJetC64 OR HTT175</td>
<td>HT350_AlphaTop52</td>
<td>$99.2^{+0.2}{-0.2}$ $98.7^{+0.5}{-0.7}$</td>
</tr>
<tr>
<td>$H_T > 475$</td>
<td>0.55</td>
<td>DoubleJetC64 OR HTT175</td>
<td>HT400_AlphaTop51</td>
<td>$99.8^{+0.1}{-0.3}$ $99.6^{+0.2}{-0.7}$</td>
</tr>
</tbody>
</table>

- The α_T analysis aims to maintain the same trigger acceptance in Run 2, however will be more challenging:
 - Increase in beam energy: $\sqrt{s} = 8$ TeV \rightarrow 13 TeV – QCD cross section increase $\times 2$
 - Reduced bunch spacing: 50 ns \rightarrow 25 ns – Collision rate increase $\times 2$
 - Average pileup 20 \rightarrow 40 will result in a degradation in reconstruction performance

- Developments in triggering aim to mitigate these problems
 - Doubling of high level trigger output bandwidth – Stored data rate $\times 2$
 - Improved pileup subtraction: HLT and Level-1
 - Improved reconstruction: Particle flow, improved calorimeter algorithms
Improvements for the Level-1 trigger

- In Run 2 thresholds on the Level-1 H_T need to be increased to control trigger rate
 - Trigger is still fully efficient for models with large mass splittings
 - Lower efficiency for compressed models which typically populate lower-H_T regions
 - Require new triggers to select these signatures

- Studied new topological Level-1 triggers to suppress QCD whilst retaining signal
 - Veto events with large $\Delta \phi$ separation between leading jets
 - Enables a large reduction in the trigger H_T threshold

- Significant improvement in trigger efficiency for compressed models for new L1 trigger
 - Implemented in hardware and software for CMS-wide trigger studies

<table>
<thead>
<tr>
<th>Signal model ($N_{\text{jet}} = 2$)</th>
<th>Current L1 trigger efficiency</th>
<th>New L1 trigger efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2cc</td>
<td>0.60</td>
<td>0.94</td>
</tr>
<tr>
<td>T2qq</td>
<td>0.63</td>
<td>0.95</td>
</tr>
<tr>
<td>T2tt</td>
<td>0.53</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Run 2 trigger optimisation

- Trigger selection is a multi-dimensional problem
 - Large combination of potential $\alpha_T - H_T$ trigger thresholds and pre-filters with rate constraints
 - Require high efficiency for a range of signal models and analysis selections

- Reduce complexity with α_T, H_T parameterised efficiency-rate curves

- QCD pileup is a serious challenge in controlling trigger rates (expect 40 simultaneous interactions)

- Investigating methods for controlling QCD rate in the trigger
 - Implementation of a second jet threshold provides increase in performance relative to 2012 selection

- Trigger selections for Run 2 are currently in the process of being finalised
Run 2 analysis developments

- Transition to particle flow (PF) jet reconstruction with charged hadron pileup subtraction (CHS)
 - Provides improved jet resolution and performance in high-pileup environments
 - Reduced jet radius parameter ($\Delta R = 0.4$) mitigates pileup energy contamination within clustered jets

- Improved event reconstruction and analysis selections to increase analysis acceptance

- Better control of systematics with additional control samples and closure tests
 - Addition of $e +$ jets, $e e +$ jets control samples

- Extend sensitivity to compressed models and monojet-like signatures (DM)
 - Relax second jet threshold to increase acceptance to compressed models

Compressed model

$H_T > 200, \alpha_T > 0.65$
The α_T analysis is an inclusive and robust search utilising low thresholds to probe a range of SUSY models

- Has set stringent limits on sparticle production for several supersymmetric models with new limits on compressed models to be released soon

Run 2 offers many opportunities for SUSY searches

- New energy frontier provides a large increase in the production rate of heavy particles

The environment in Run 2 however will be challenging

- Latest trigger developments aim to provide the same acceptance as in Run 1
- Analysis developments aim to extend model coverage even further

Eagerly awaiting the start of Run 2

- Run 2 should be particularly sensitive to natural SUSY
- Quickly improve limits (or discover) natural (non-compressed) SUSY
Backup
Supersymmetry

- Supersymmetry is the last available extension to the Poincare symmetry group
 - Space-time symmetry between fermions and bosons → Superpartners to SM particles

Stability of proton motivates conservation of R-parity: $R = (-1)^{3(B-L)+2S}$
 - SM particles: $R = +1$, SUSY particles: $R = -1$
 - Conservation of R-parity implies:
 - Sparticles are produced and annihilate in pairs
 - The lightest supersymmetric particle (LSP) is stable
 - SUSY signatures → Jets, leptons, photons and MET

31/03/2015 Mark Baber - IOP
SUSY solutions to SM problems

- Unification of gauge coupling constants at GUT scale
 - Introduction of SUSY particles enables unification at $\sim 10^{15}$ GeV

- Supersymmetry provides candidates for dark matter
 - LSP is weakly interacting and stable (conservation of R-Parity)

- Provides a solution to the hierarchy problem
 - Cancellation of quadratic diverges to radiative corrections of the Higgs mass
 - Higgs (125 GeV) discovery motivates focus on natural SUSY
 - \sim1 TeV gluino, \sim500 GeV 3rd generation squarks and an LSP
Run 1 event selection

- **Jet selection**
 - Jet $E_T > 50$ GeV, $|\eta| < 3$
 - Leading jet: $|\eta| < 2.5$
 - Second jet threshold: $E_T > 100$ GeV, reduced for low-H_T
 - Forward jet: No jets with $E_T > 50$ GeV and $|\eta| > 3$

- **Event categorisation**
 - Eight H_T bins: Two 50 GeV bins in range: $275 < H_T < 375$ GeV, five bins 100 GeV in the range: $375 < H_T < 875$ GeV and an open bin: $H_T > 875$ GeV
 - Two jet bins: $2 \leq N_{jet} \leq 3$, $N_{jet} \geq 4$
 - Five b-jet bins: $N_b = 0, 1, 2, 3, \geq 4$

- **α_T threshold scaled with H_T to control QCD**
 - Low H_T: $\alpha_T > 0.65$, High H_T: $\alpha_T > 0.55$

- **Event vetoes**
 - MHT/MET > 1.25
 - Dead ECAL: Jets in proximity to dead calorimeter regions
 - Isolated e/γ $p_T > 10$ GeV
 - Isolated $\mu > 25$ GeV
Analysis backgrounds

- QCD
 - Fake missing energy from detector and acceptance effects
 - Jets below threshold
 - Calorimeter effects

- W + Jets
 - Leptonic decay with lepton outside acceptance/below threshold
 - Hadronic tau decay

- Z + Jets
 - $Z \rightarrow$ Invisible, irreducible background

- $t\bar{t}$
 - Leptonic decay with lepton outside acceptance/below threshold
 - Hadronic tau decay

- Residual backgrounds
 - Single-top, diboson production
α_T Run 1 limits

CMS, 11.7 fb$^{-1}$, $\sqrt{s} = 8$ TeV

T1qqqq

T2qq
α_T Run 1 limits

CMS, 11.7 fb$^{-1}$, $\sqrt{s} = 8$ TeV

T2bb

T2tt
α_T Run 1 limits

Diagram 1:
- Process: $pp \rightarrow g\bar{g}, g \rightarrow t\bar{t}\chi_1^0$; $m(t) >> m(g)$
- Expected Limit $\pm 1\sigma$ exp.
- $\sigma^{\text{NLO+NLL}} \pm 1\sigma$ theory
- CMS, 11.7 fb$^{-1}$, $\sqrt{s} = 8$ TeV

Diagram 2:
- Process: $pp \rightarrow g\bar{g}, g \rightarrow b\bar{b}\chi_i^0$; $m(b) >> m(g)$
- Expected Limit $\pm 1\sigma$ exp.
- $\sigma^{\text{NLO+NLL}} \pm 1\sigma$ theory
- CMS, 11.7 fb$^{-1}$, $\sqrt{s} = 8$ TeV

Diagrams:
- T1tttt
- T1bbbb
CMS Run 1 limits
Potential reach in Run 2

- In LHC Run 2 the centre of mass energy of will exceed Run 1
 - \(\sqrt{s} = 8 \text{ TeV} \rightarrow 13 \text{ TeV} \)
 - Large increase in the production cross section of massive objects

- Considering current limits and parton scaling alone can provide a naïve estimate of reach with 10 fb\(^{-1}\) at 13 TeV:
 - \(m_{\text{gluino}} = \sim 1.4 \text{ TeV} \rightarrow \sim 1.9 \text{ TeV} \)
 - \(m_{\text{stop}} = \sim 750 \text{ GeV} \rightarrow \sim 950 \text{ GeV} \)
 - Reach is weaker for compressed spectra
Pileup

- 8 TeV event with 29 simultaneous interactions
Triggering at the LHC

- The LHC presents several major challenges to the trigger system
 - **High collision rate** – CMS measures 40 Million events per second, at 1 MB per event this corresponds to ~40 TB/s
 - **Pileup** – 40 overlapping collisions per event
 - **pp collider** – Messy environment, high particle fluxes

- Events are predominantly QCD events of little interest
 - Require a trigger system with huge suppression to reject QCD but retain signal
 - Higgs cross section 10^{10} smaller than QCD

![Graph showing Inelastic QCD and Higgs production rates at different energy scales.](Graph.png)
The CMS trigger system

- CMS utilises a two-level trigger system to perform event selection

- Level-1 trigger (L1 trigger)
 - Custom electronics perform a coarse reconstruction of the event (3.2 μs)
 - Only perform reconstruction of calorimeter and muon systems
 - **Rate reduction:** 40 MHz → 100 kHz (1:400)

- High level trigger (HLT)
 - Computer farm (10,000’s of cores) perform a more complete reconstruction (~300 ms)
 - Full detector reconstruction, pileup-subtraction, simple tracking algorithm
 - **Rate reduction:** 100 kHz → ~1 kHz (1:100)